Изначально кристаллами называли горный хрусталь - безупречный в своей холодной красоте прозрачный кварц. В прежние времена, когда ученые еще не могли объяснить причину и принцип их образования, кристаллам приписывали всевозможные волшебные свойства, свидетельство тому - многочисленные легенды и сказания, в которых упоминаются магические кристаллы, способные исцелять больных или показывать будущее. Современная кристаллофизика развеяла весь этот романтический туман, издавна окутывающий кристаллы, и дала четкое определение, что такое кристалл с научной точки зрения.

Кристалл - что это такое

Кристалл - это твердое тело природного происхождения либо образованное в лабораторных условиях, имеющее форму правильного многогранника. Правильность формы кристалла основана на его внутренней структуре - частицы вещества, из которых слагается кристалл (молекулы, атомы и ионы), располагаются в нем в определенной закономерности и образуют периодично-повторяющуюся трехмерную пространственную укладку, иначе называемую «кристаллической решеткой».

Виды и типы кристаллов

Ученые, занимающиеся изучением кристаллов, различают такие понятия, как «кристалл идеальный» и «кристалл реальный».

Идеальный кристалл

Идеальный кристалл - это некая абстрактная математическая модель кристалла, в которой ему приписывается абсолютно правильная форма, соответствующая его кристаллической решетке, полная симметрия и идеально ровные грани. Проще говоря, идеальный кристалл - это кристалл с полным набором всех качеств, свойств и характеристик, присущих данному виду кристаллов.

Реальный кристалл

Реальный кристалл - это тот кристалл, что существует в действительности. В отличие от идеального, у него имеются некоторые дефекты внутренней структуры, грани его не безупречны, а симметрия понижена. Но при всех этих недостатках в реальном кристалле сохраняется то главное свойство, которое и делает его кристаллом - частицы в нем располагаются в закономерном порядке.

Происхождение кристаллов

  • Природные (натуральные) кристаллы зарождаются и вырастают в недрах Земли в течение длительного времени в условиях сверхвысоких температур и огромного давления.
  • Искусственные кристаллы люди научились выращивать не только в лабораториях, но даже в домашних условиях. Кстати, о том, как самому вырастить соляной кристалл из раствора обычной поваренной соли, вы можете узнать из нашей статьи .

Вещества, образующие кристаллы

Кристаллы - это не только алмазы, аметисты, изумруды, сапфиры и прочие драгоценные и полудрагоценные камни, как некоторые из нас привыкли считать. Помимо этих самых известных и красивых кристаллов в природе существует множество других веществ, имеющих кристаллическое строение. Самым распространенным веществом, обладающим способностью образовывать кристаллы, является обычная вода. Как выглядят кристаллы воды, знают даже дети -льдинки и снежинки хорошо всем известны.

Самым распространенным состоянием всех существующих веществ Земли и Космоса является кристаллическое состояние. Что это такое? На какие типы подразделяются кристаллы? Как можно вырастить кристалл в домашних условиях, читайте в статье.

Определение

Кристалл - это тело твердой консистенции многогранной формы. Его возникновение - результат расположения частиц: атомов, молекул, ионов в определенном порядке. Их задачей является образование рядов, плоских сеток и пространственных решеток.

Многогранные кристаллы могут быть:

  • в виде кубиков - пириты;
  • призм с заостренными концами - горный хрусталь;
  • двенадцатигранников - гранат;
  • восьмигранников - железная руда (магнетит);
  • драгоценных камней - алмазы, топазы, рубины и другие.

Размеры этих образований бывают достаточно большие.

Кристалл - это тело, вершина которого должна соответствовать атому, иону, молекуле. Ребро, соответственно, - каждому ряду частиц, а грань - сетке. Если во много раз увеличить реальные кристаллы, то видно, что вершина, ребро и грань состоят из множества частиц, рядов, сеток, которые располагаются параллельно.

Какие бывают кристаллы?

Специалисты выявили разные типы кристаллов:

  • Идеальные - представляют собой абстрактную модель, обладающую правильной формой, полной симметрией и ровными гранями. Другими словами, понятие идеального кристалла включает в себя полный набор лучших свойств и качеств, которыми он характеризуется.

  • Реальные кристаллы - это действительно существующие в природе тела, у которых внутренняя структура может иметь дефекты, небезупречными бывают грани, а симметрия и вовсе понижена. Но реальный кристалл, несмотря на все недостатки, наделен главным свойством, делающим его кристаллом, - расположением частиц в закономерном порядке.

Выращивание кристалла из соли

Из соли можно вырастить кристаллы и в домашних условиях. Для этого понадобится соль, стеклянная емкость, нить, карандаш, вода. Итак, как вырастить кристалл соли?

  1. В стакан с водой соль всыпают порциями и тщательно перемешивают, пока она не растворится полностью.
  2. Жидкость ставят на огонь и прогревают до 90°С. Воду доводят до кипения, но не кипятят. Раствор охлаждают и процеживают - в нем не должно быть осадка.
  3. Затем нить привязывают к карандашу, а к ней - кристаллик соли или пуговицу, которую предварительно нужно окунуть в соляной раствор и высушить.
  4. Кончик нити с привязанной наживкой опускают в емкость с растворенной солью так, чтобы он не касался дна и стенок.
  5. Емкость накрывают чистой салфеткой и помещают в теплое место. Температура должна быть постоянной.

Время, в течение которого будет расти кристалл, разное. Оно зависит от его желаемой величины.

Пространственная кристаллическая решетка

Если вместо частиц - ионов и атомов - поставить точки, то строение кристалла представляет собой пространство, которое заполнено точками, расположенными в закономерном порядке. Если их соединить линиями, получится пространственная решетка, состоящая из следующих элементов:

  • узлов, которыми называются точки размещения частиц кристалла;
  • рядов, представленных совокупностью узлов, которые через одинаковые расстояния периодически повторяются (узлы лежат вдоль прямых линий);
  • промежутков, которыми называется расстояние от одного до другого равнозначного узла (эти промежутки ничтожно малы);
  • плоской сетки, представляющей собой узлы и ряды, которые располагаются в единой плоскости.

Решетки бывают разными. Это зависит от того, какова природа частиц кристалла и связь между ними. Виды кристаллические решетки бывают:

  • Ионные - узлы решеток содержат ионы, которые бывают положительными и отрицательными. Между собой они связаны взаимодействием, которое называется электростатическим. Ионы бывают простыми и сложными. В узлах хлорида натрия они простые, а сульфата калия - сложные. В таких кристаллах ионы связаны между собой прочно, а вещества отличаются твердостью, тугоплавкостью, они нелетучие и растворимы в воде.
  • Металлические - такие решетки в своем составе имеют положительные ионы, свободные электроны и атомы металлов. Решетки образуются такими веществами, которые характеризуются металлической связью. Они свойственны простым металлам и их сплавам. Металлы, как правило, имеют разную температуру плавления, но все без исключения обладают металлическим блеском, пластичностью, ковкостью и хорошей электро- и теплопроводностью.

  • Атомные - для узлов характерно наличие отдельных атомов, соединенных между собой так называемыми ковалентными связями. Решетку такого типа имеет алмаз, графит, кварц, песок, горный хрусталь и др. Эти вещества прочные и твердые, обладают высокой температурой плавления и кипения.
  • Молекулярные - это решетки, узлы которых содержат молекулы, связанные между собой слабым взаимодействием, называемым межмолекулярным, хотя атомы в молекулах соединены прочно. Кристаллы с молекулярной кристаллической решеткой обладают маленькой твердостью и прочностью, низкой температурой плавления, а также кипения. Многим молекулярным веществам свойственно жидкое и газообразное состояние, они летучи и могут иметь запах. К веществам с такой связью относится вода, аммиак, нафталин, кислоты, глюкоза, сахар и т. п.

Причины изменения формы природных кристаллов

Свою форму кристаллы меняют по разным причинам. Одной из них является нарушение условий, в которых они образуются. Так, если магма будет застывать медленно, то у зерен кварца будут неправильные, криволинейные контуры. Другой пример, когда коренные породы разрушаются, их обломки сносятся водой. Поэтому часто в песках обнаруживаются кристаллы таких пород, как кварц, магнетит, гранат.

Форма таких недоразвитых кристаллов уродливая, их грани обломанные. Кристалл - это геометрически правильная форма, которая распространяется не только на поверхность кристалла, но и на внутреннее его строение. Между частицами здесь имеется расстояние, они не заполняют все пространство, то есть их расположение имеет определенный порядок, присущий только данному веществу.

На территории бывшего Советского Союза в 1958 году ученые нашли кристалл кварца гигантского размера. Его длина составляла 7,5 м, ширина - 1,5 м и масса - 70 т. Попадались кристаллы берилла массой 18 т и длиной 5 м. Хотя во время находок чаще встречаются кристаллики микроскопических размеров.

В восточной части Оренбургской области посчастливилось найти горный хрусталь, кристалл которого имел длину 170 см, ширину - 80 см, массу - 784 кг. Его иронично назвали «Малюткой». В настоящее время этот кристалл расположен у входа в Уральский музей геологии в городе Екатеринбурге.

Среди всех чудес природы мир камней и минералов отличается фантастическим разнообразием и гармонией сочетания цвета и формы. Совершенство контрастирует с хрупкостью, а геометрия форм способна завораживать. Природа — самый талантливый художник, ее произведения бесценны, они наделены древней энергией, силой и божественной красотой. Мир камней представлен тысячами видов форм и окрасок. А структуру минерала зачастую можно увидеть только под микроскопом, так как кристаллические образования бывают настолько малы, что не видны невооруженному глазу.

Разнообразие кристаллов настолько же велико, насколько велико разнообразие человеческих лиц. Как и мы, кристаллы обладают не только индивидуальным внешним обликом, но и внутренней энергией. Каждый камень имеет свой характер и силу. Окраска минералов многообразна и изменчива, это связано прежде всего с вхождением различных элементов в кристаллическую решетку. Каждый минерал образуется в результате синтеза, который происходит по строгим законам физики и химии.

Фантазия природы дарит кристаллам причудливые формы, будь то пучок стеблей мезолита, песчаная роза гипса, загадочный лабиринт висмута или целая вселенная внутри жеоды агата. Неудивительно, что эти сокровища становятся желанными объектами коллекционирования. В этом деле я не стала исключением. Набор моих минералов вряд ли можно назвать коллекцией, но в нем присутствуют дорогие мне камни, которые находятся со мной долгое время, подпитывают меня силами и вдохновением.

А сегодня мне хочется рассказать об основных и наиболее распространенных видах кристаллов: друзах, жеодах и монокристаллах.

Друза (в переводе с немецкого druse означает «щетка»)
— это множество сросшихся кристаллов. Однако не все кристаллические сростки принято считать друзой. Под друзами обычно понимаются сросшиеся кристаллы, хаотично расположенные на одном основании. Размеры и количество кристаллов в друзе могут варьироваться. Например, друза, размер кристаллов которой составляет несколько миллиметров называется щеткой . А друза с плоским основанием и кристаллами, направленными в стороны от центра называется цветком . Такие образования выстилают стенки пустот, нарастают на стенках трещин и встречаются в открытых полостях пород. Агрегаты в виде друз кристаллов характерны для многих минералов — кварца, кальцита, флюорита, пирита, барита, полевых шпатов, гранатов и др.

Друза в более глобальном понимании — это множество кристаллов, сосуществующих вместе в гармонии и мире. Это олицетворение развитого общества, где каждый его член уникален и совершенен, но все они живут на общем основании, решая совместные задачи. Каждый кристалл воздействует на соседние как своей собственной энергией, так и той, что он принял от своих близких. Заряжая друг друга, кристаллы друзы излучают мощную энергию в окружающее пространство. Друзы прекрасно подходят для очистки помещения, поскольку они поглощают, трансформируют и излучают энергию.

Жеода (от греческого геодес , что означает «земляной», «землеподобный»)
— это геологические образования, пустоты в горных породах, стенки которых обычно выложены друзами кристаллов или сферолитовыми структурами. Форма жеоды может быть любая, но чаще она округлая или эллипсоидальная. Размеры их могут быть от нескольких миллиметров до нескольких метров. Самые большие жеоды могут достигать величины более 1 метра и именуются пещерами . Маленькие же, величиной менее 1 см называются миндалинами . Особенно часто встречаются жеоды, состоящие из минералов группы кварца (аметист, горный хрусталь, агат, цитрин, халцедон и др.), но характерны и для многих других минералов, отлагающихся в пустотах. Самая большая аметистовая жеода (Императрица Уругвая) весит 2,5 тонны и более 3 метров в величину.

Благодаря своей округлой форме жеоды собирают энергию внутрь, структурируют, очищают и излучают ее вовне через кристаллы. За счет вогнутой формы и множества кристаллов энергия усиливается, но в отличие от единичных кристаллов и друз она излучается более мягко. Жеоды считаются камнями шаманов, их используют для получения видений и вхождения в состояние измененного состояния. Жеода прекрасна не только для украшения дома, но и для очистки пространства от негативной энергии. Как и друзы жеоды можно и нужно заряжать энергией солнца, луны или свечи (огня).

Монокристалл
— это отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку. Внешняя форма монокристалла обусловлена его решёткой и условиями (в основном это скорость и однородность) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку. А при большой скорости кристаллизации вместо монокристалла образуются однородные поликристаллы (или кристаллические зерна), состоящие из множества мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить единичные кристаллы кварца, каменной соли, исландского шпата, алмаза, топаза, флюорита и др.

Монокристаллы являются прекрасными концентраторами, проводниками и преобразователями энергии. Двухконечные монокристаллы в отличие от кристаллов с одной вершиной могут одновременно проводить энергию в оба направления. В литотерапии монокристаллы используют для восстановления энергетических каналов, для четкого направления энергии камня к определенным органам. Монокристаллы способны вывести негативную и одновременно наполнить новой положительной энергией. Они отлично подходят для восстановления и структурирования личности, объединения сознания и духа.

Кузьменкова Мария, Осипова Анна

Что такое кристаллы? Какими свойствами они обладают? Что такое кристаллическая решётка? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали нас, и мы попытались найти на них ответы сами, так как в учебнике об этом мало говорится и ответов на эти вопросы мы не нашли.

Скачать:

Предварительный просмотр:

НОУ школа – интернат № 26 ОАО «РЖД»

Осипова Анна,

учащиеся 7 класса

Научный руководитель:

Прокушева Наталья Анатольевна,

учитель физики

Нижнеудинск, 2010

Введение 3

1 Понятие «кристалл». Строение кристаллов 4

2 Виды кристаллов 7

3 Образование кристаллов 8

4 Применение кристаллов 9

5 Выращивание кристаллов в домашних условиях 14

Заключение 16

Литература 19

Введение

Поэзия! Завидуй кристаллографии!

Кусай ногти в гневе и бессилии!

О. Мандельштам

Мы живём в мире, в котором большая часть веществ находится в твёрдом состоянии. Мы пользуемся различными механизмами, инструментами, приборами. Мы живём в домах и квартирах. Имеем мебель, бытовые приборы, современнейшие средства связи: радио, телевидение, компьютеры и т.д. А ведь всё это твёрдые тела. С физической точки зрения, человек – твёрдое тело. В отличие от жидкостей, твёрдые тела сохраняют не только объём, но и форму, так как положение в пространстве частиц, составляющих тело, стабильно. Из-за значительных сил межмолекулярного воздействия частицы не могут удаляться друг от друга на значительные расстояния.

В природе часто встречаются твёрдые тела, имеющие форму правильных многогранников. Такие тела назвали кристаллами. Изучение физических свойств кристаллов показало, что геометрически правильная форма – не главная их особенность.

Знаменитое изречение академика А.Е.Ферсмана «Почти весь мир кристалличен. В мире царит кристалл и его твёрдые прямолинейные законы» полностью согласуется с неугасающим научным интересом учёных всего мира и всех областей знания к данному объекту исследования. Так, в конце 60-х годов прошлого века начался серьёзный научный прорыв в области жидких кристаллов, породивший «индикаторную революцию» по замене стрелочных механизмов на средства визуального отображения информации. Позже в науку вошло понятие биологический кристалл (ДНК, вирусы и т.д.), а в 80-х годах XX века – фотонный кристалл.

Что такое кристаллы? Какими свойствами они обладают? Что такое кристаллическая решётка? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали нас, и мы попытались найти на них ответы сами, так как в учебнике об этом мало говорится и ответов на эти вопросы мы не нашли.

Цели нашей работы:

  1. Проследить эволюцию взглядов на природу кристаллов.
  2. Изучить строение и физические свойства кристаллов.
  3. Исследовать области применения кристаллов.
  4. Вырастить кристаллы в домашних условиях.

1 Понятие «кристалл». Строение кристаллов

Физика твёрдого тела (раздел физики, изучающий структуру и свойства твёрдых тел) – это одна из основ современного технологического общества. В сущности, огромная армия инженеров всего мира работает над созданием твёрдых материалов с заданными свойствами, необходимыми для использования в самых разнообразных станках, механизмах и устройствах в области связи, транспорта и компьютерной техники.

Кристаллы (от греч. kr ý stallos, первоначально - лёд, в дальнейшем - горный хрусталь, кристалл) твёрдые тела, имеющие естественную форму правильных многогранников (рис. 1). Эта форма - следствие упорядоченного расположения в кристаллах атомов, образующих трёхмерно-периодическую пространственную укладку - кристаллическую решетку (рис. 2). Кристаллам ряда химических элементов и их соединений присущи замечательные механические, электрические, магнитные и оптические свойства.

Кристалл - равновесное состояние твёрдых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определённая кристаллическая атомная структура. Кристаллы обладают той или иной симметрией атомной структуры, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией физических свойств. Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки или потерявший её в результате той или иной обработки, сохраняет основной признак кристаллического состояния - решётчатую атомную структуру и все определяемые ею свойства.

Большинство природных или технических твёрдых материалов являются поликристаллическими, они состоят из множества отдельных, беспорядочно ориентированных, мелких кристаллических зёрен, иногда называемых кристаллитами. Таковы, например, многие горные породы, технические металлы и сплавы. Одиночные кристаллы (природные или синтетические) называются монокристаллами.

Рис. 1 Разнообразие кристаллов в природе

Рис. 2 Примеры простых кристаллических решёток: 1 – простая кубическая; 2 – гранецентрированная кубическая; 3 – объёмно-центрированная кубическая; 4 – гексагональная

Русский учёный Е.С.Фёдоров установил, что в природе может существовать только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры. Большинство из них (но не все) обнаружены в природе или созданы искусственно. Кристаллы могут иметь форму различных призм, основанием которых могут быть правильный треугольник, квадрат, параллелограмм и шестиугольник.

Кристаллические решётки металлов часто имеют форму гранецентрированного (медь, золото) или объёмно-центрированного куба (железо), а также шестигранной призмы (цинк, магний).

В основе классификации кристаллов и объяснения их физических свойств может лежать не только форма элементарной ячейки, но и другие виды симметрии, например, поворот вокруг оси. Осью симметрии называют прямую, при повороте вокруг которой на 360° кристалл несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси . Существуют кристаллические решётки, обладающие осями симметрии 2-го, 3-го, 4-го и 6-го порядков. Возможна симметрия кристаллической решётки относительно плоскости симметрии, а также комбинация разных видов симметрии (рис. 3).

Рис.3 Симметрия кристаллов

2 Виды кристаллов

Различают идеальные и реальные кристаллы. Идеальный кристалл я вляется, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани и т. д. Реальный кристалл всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

Основной отличительный признак кристаллов - присущее им свойство анизотропии , т о есть зависимость их свойств от направления, тогда как в изотропных (жидкостях , аморфных твёрдых телах ) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят.

3 Образование кристаллов

Существует три способа образования кристаллов: кристаллизация из расплава, из раствора и из газовой фазы. Примером кристаллизации из расплава может служить образование льда из воды (ведь вода – это расплавленный лёд), а также образования вулканических пород. Пример кристаллизации из раствора в природе – выпадение сотен миллионов тонн соли из морской воды. При охлаждении газа (или пара) электрические силы притяжения объединяют атомы или молекулы в кристаллическое твёрдое вещество – так образуются снежинки.

Наиболее распространёнными способами искусственного выращивания монокристаллов являются кристаллизация из раствора и из расплава. В первом случае кристаллы растут из насыщенного раствора при медленном испарении растворителя или при медленном понижении температуры. Такой процесс можно продемонстрировать в лаборатории с водным раствором поваренной соли. Если дать воде возможность медленно испаряться, то, в конце концов, раствор станет насыщенным, и дальнейшее испарение приведёт к выпадению соли.

Рис. 4 Кристаллизация из раствора

Если твёрдое вещество нагреть, оно перейдёт в жидкое состояние – расплав. Трудности выращивания монокристаллов из расплавов связаны с высокой температурой плавления. Например, для получения кристалла рубина нужно расплавить порошок оксида алюминия, а для этого его нужно нагреть до температуры 2030 °С. Порошок высыпают тонкой струйкой в кислородно-водородное пламя, где он плавится и каплями падает на стержень из тугоплавкого материала. На этом стержне постепенно и вырастает монокристалл рубина.

Рис. 5 Кристаллизация из расплава

4 Применение кристаллов

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Мы ограничились несколькими примерами.

1. Алмаз . Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах. На алмазных подшипниках не обнаруживается никакого износа даже после 25 млн. оборотов. Высокая теплопроводность алмаза позволяет использовать его в качестве теплоотводящей подложки в полупроводниковых электронных микросхемах.

Конечно, алмазы используются и в ювелирных изделиях – это бриллианты.

2. Рубин . Высокая твёрдость рубинов, или корундов, обусловила их широкое применение в промышленности. Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни – нитеводители на фабриках по изготовлению химического волокна. Они практически не изнашиваются, в то время как нитеводители из самого твёрдого стекла при протяжке через них искусственного волокна изнашиваются за несколько дней.

Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.

3. Жидкие кристаллы . Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Подобно жидкостям они текучи, подобно кристаллам обладают анизотропией. Строение молекул жидких кристаллов таково, что концы молекул очень слабо взаимодействуют друг с другом, в то же время боковые поверхности взаимодействуют очень сильно и могут прочно удерживать молекулы в едином ансамбле.

Рис. 6 Жидкие кристаллы: смектические (слева) и холестерические (справа)

Наибольший интерес для техники представляют холестерические жидкие кристаллы. В них направление осей молекул в каждом слое немного отличается друг от друга. Углы поворота осей зависят от температуры, а от угла поворота зависит окраска кристалла. Эта зависимость используется в медицине: можно непосредственно наблюдать распределение температуры по поверхности человеческого тела, а это важно для выявления скрытых под кожей очагов воспалительного процесса. Для исследования изготовляют тонкую полимерную плёнку с микроскопическими полостями, заполненными холестериком. Когда такую плёнку накладывают на тело, то получается цветное отображение распределения температуры. Этот же принцип используется в жидкокристаллических термометрах.

Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Нужная цифра или буква воспроизводится с помощью комбинации небольших ячеек, выполненных в виде полосок. Каждая ячейка заполнена жидким кристаллом и имеет два электрода, на которые подаётся напряжение. В зависимости от величины напряжения, «загораются» те или иные ячейки. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии.

Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.

4. Полупроводники . Исключительная роль выпала на долю кристаллов в современной электронике. Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электричества, как металлы, но их нельзя отнести и к диэлектрикам, т.к. они не являются и хорошими изоляторами. Такие вещества относят к полупроводникам. Это большинство веществ, их общая масса составляет 4/5 массы земной коры: германий, кремний, селен и др., множество минералов, различные оксиды, сульфиды, теллуриды и др.

Наиболее характерным свойством полупроводников является резкая зависимость их удельного электрического сопротивления под воздействием различных внешних воздействий: температуры, освещения. На этом явлении основана работа таких приборов, как термисторы, фоторезисторы.

Объединяя полупроводники различного типа проводимости, можно пропускать электрический ток только в одном направлении. Это свойство широко используется в диодах, транзисторах.

Исключительно малые размеры полупроводниковых приборов, иногда всего в несколько миллиметров, долговечность, связанная с тем, что их свойства мало меняются со временем, возможность легко изменять их электропроводность открывают широкие перспективы использования полупроводников сегодня и в будущем.

5. Полупроводники в микроэлектронике . Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов – транзисторов, диодов, резисторов, конденсаторов, соединительных проводов, изготовленных на одном кристалле. При изготовлении интегральной схемы на пластинку из полупроводника (обычно это кристаллы кремния) наносятся последовательно слои примесей, диэлектриков, напыляются слои металла. В результате на одном кристалле формируется несколько тысяч электрических микроприборов. Размеры такой микросхемы обычно 5 мм, а отдельных микроприборов – порядка 10 –6 м.

–9 –10 –10 м. Для этого на очищенную поверхность монокристалла никеля или кремния с помощью туннельного микроскопа напыляются небольшие количества атомов или молекул других веществ. Поверхность кристалла охлаждается до –269 °С, чтобы исключить заметные перемещения атомов вследствие теплового движения. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне. Это уже предел «миниатюризации».

6. Вольфрам и молибден . На современном уровне технического развития резко возросли скорости нагрева и охлаждения деталей приборов и машин, значительно увеличился интервал температур, при которых им приходится работать. Очень часто требуется длительная работа при очень высоких температурах, в агрессивных средах. Также необходимы машины, способные выдерживать большое число температурных циклов.

При таких сложных условиях эксплуатации детали и целые узлы многих машин и приборов очень быстро изнашиваются, покрываются трещинами и разрушаются. Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам. Монокристаллы вольфрама и молибдена, полученные при помощи зонной плавки, используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.

7. Кварц . Это диоксид кремния, один из самых распространённых минералов земной коры, по сути, песок. Природные кристаллы кварца имеют размеры от песчинок до нескольких десятков сантиметров, встречаются кристаллы размером до одного метра и более. Чистый кристалл кварца бесцветен. Ничтожные посторонние примеси вызывают разнообразную окраску. Прозрачные бесцветные кристаллы – это горный хрусталь, фиолетовые – аметист, дымчатые – раухтопаз. Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике.

Кварц также обладает пьезоэлектрическими свойствами, т.е. способен преобразовывать механическое воздействие в электрическое напряжение. Благодаря этому свойству кварц широко применяется в радиотехнике и электронике – в стабилизаторах частоты (в том числе и в часах), всевозможных фильтрах, резонаторах и т.д. С помощью кристаллов кварца возбуждают (и измеряют) малые механические и акустические воздействия.

Рис. 7 Применение кристаллов в быту и технике

Из плавленного кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.

5 Практическая часть

Выращивание кристаллов в домашних условиях

Мы вырастили в домашних условиях кристаллы медного купороса.

1. Материал - сульфат меди порошок (медный купорос, CuSO 4 ) - 500г. В процессе теоретической работы над темой мы выяснили, что чем чище соль сульфата меди - тем красивее вырастут кристаллы. Мы взяли обычный медный купорос, который продаётся в отделах «Всё для сада и огорода».

Рис. 8 Медный купорос

2. Стеклянный химический термостойкий стакан вместимостью 200-300мл или обычная стеклянная банка.

Рис. 9 Стеклянная ёмкость

3. Мы налили в банку тёплую воду так, чтобы до краёв осталось 3-4 см. Постепенно добавляли медный купорос в воду и тщательно перемешивали ложкой. Получился насыщенный раствор темно - синего цвета. Банку мы подогрели на водяной бане, чтобы растворить оставшиеся кристаллы.

Рис. 10 Готовый раствор

Мы выбрали самые крупные кристаллики из соли медного купороса, привязали их на нитки. Нитки привязали к обычной шариковой ручке и опустили эту «затравку» в банку, поставили в кухне на шкаф.

Через сутки кристаллы выросли приблизительно до 1 см. в диаметре. Они были похожи на драгоценные камни. Окончательно вытащили их из банки мы недели через две, просушили и покрыли бесцветным лаком. За это время кристаллы на ниточках выросли не много, но на дне тоже образовался кристаллический осадок.

Рис. 11 Так выглядит кристалл медного купороса, выращенный из раствора

Заключение

Кристаллы активно используются в современной науке и технике. Широко в промышленности применяются природные и искусственные алмазы .

Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах.

Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.

Большой интерес для техники представляют жидкие кристаллы . Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии. Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.

Исключительная роль выпала на долю кристаллов и в современной электронике и микроэлектронике. С их помощью работают такие приборы, как термисторы, фоторезисторы, диоды, транзисторы.

В последнее время всё чаще стали обсуждать возможность создания электронных микросхем, в которых размеры элементов будут сопоставимы с размерами самих молекул, т.е. порядка 10 –9 –10 –10 м. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне.

Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам . Монокристаллы вольфрама и молибдена используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.

Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике. Из плавленого кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.

Практическая часть нашей работы заключалась в выращивании кристаллов. Мы убедились, что довольно легко и быстро вырастают кристаллы медного купороса. К тому же они очень красивые. А кристаллы из обычной поваренной соли нам вырастить не удалось.

Литература

  1. Лымарева Н.А. Проектная деятельность учащихся. Физика 9 – 11 классы. – Волгоград: Учитель, 2008
  2. Учебник «Физика-10»: Под ред. А.А.Пинского. – М: Просвещение, 2001.
  3. Физическая энциклопедия, т. 3: Под ред. А.М.Прохорова. – М: Советская энциклопедия, 1990.
  4. Ресурсы интернета.

Вопрос о происхождении большинства минералов в природе тесно связан со сложной проблемой происхождения и развития Земли. Согласно современным представлениям Земля образовалась путем объединения первоначально холодного вещества, имевшегося в солнечной системе в виде твердых частиц пыли. За счет выделения энергии при столкновении частиц, а также за счет ряда других источников энергии Земля должна была разогреться до 1000--2000° С. При такой высокой температуре слои, близкие к поверхности и не сжатые давлением вышележащих слоев, должны были расплавиться. В этом расплавленном слое произошло разделение пород: менее плотные породы, типа гранитов, всплыли на поверхность, под ними расположился слой более плотных базальтов и еще ниже -- породы, слагающие мантию. Газы, освободившиеся при расплавлении вещества верхнего слоя земного шара, образовали атмосферу Земли. При последующем остывании Земли расплавленные слои затвердели и образовали земную кору, пары воды после конденсации из атмосферы создали Мировой океан.

Многие минералы и горные породы образовались при охлаждении земной коры подобно тому, как образуется лед при замерзании воды. Магма, вещество земной коры в расплавленном состоянии, представляет собой сложный расплав различных веществ, насыщенный различными горячими газами и парами. При охлаждении магмы сначала в ней образовались кристаллы того вещества, температура кристаллизации которого самая высокая. По мере дальнейшего охлаждения происходила кристаллизация других минералов, обладающих меньшей температурой кристаллизации, и так до тех пор, пока вся магма не затвердела. Так, в честности, могли образовываться такие распространенные породы, как граниты.

Рассматривая зернистую поверхность гранита, можно сделать вывод, какой из входящих в его состав минералов образовался раньше других. Зерна этого минерала крупнее и имеют форму, близкую к форме правильных кристаллов, так как им не мешали расти кристаллы других минералов. Зерна кристаллов, образовавшихся позднее, мельче и имеют случайную форму, так как для их роста остались лишь промежутки между зернами ранее выросших кристаллов. Чем медленнее понижалась температура магмы, т. е. чем дольше росли кристаллы, тем крупнозернистее получался минерал. Мелкозернистые же минералы образовались при более быстром охлаждении, А при очень быстром охлаждении магмы, например при ее выбросах на поверхность Земли во время извержения вулканов, она затвердела раньше, чем начали расти кристаллы. Вероятно, так образовался обсидиан, встречающийся на Кавказе.

При затвердевании объем земной коры уменьшался, и в ней появлялись трещины и пустоты. В таких пустотах рост кристаллов происходит беспрепятственно. В них часто находят круги и хорошо ограненные кристаллы кварца, пластинчатые кристаллы слюды площадью в несколько квадратных метров и многие другие.

Многие минералы возникли из пересыщенных водных растворов. Первым среди них следует назвать каменную соль NaCl являющуюся одним из наиболее знакомых каждому человеку минералов. Толщина пластов каменной соли, образовавшихся при испарении воды соленых озер, достигает в некоторых месторождениях нескольких сотен метров.

Каждому знаком способ образования кристаллов из пара. Снежинки, морозные узоры на стеклах окон и иней, украшающий зимой голые ветки деревьев, представляют собой кристаллы льда, выросшие из паров воды.

Подобным образом образуются и кристаллы некоторых минералов. Например, летучие пары соединений борного ангидрида оседая на стенках пустот и трещин остывающей магмы, образуют кристаллы турмалина, иногда достигающие 2--3 м длины.

На стенках кратеров «курящихся» вулканов постоянно образуются кристаллы серы, хлористого аммония, каменной соли и других веществ, достигающих поверхности Земли в виде пара. Однажды при извержении Везувия за несколько дней из паров образовалась жила кристаллов гематита (Ре 2 О 3) толщиной 1 м.

Многие кристаллы являются продуктами жизнедеятельности организмов. Некоторые виды моллюсков обладают способностью наращивать на инородных телах, попавших в раковину, перламутр. За 5 -- 10 лет образуется драгоценный камень жемчуг, имеющий поликристаллическое строение.

В морской воде растворено много различных солей. Мириады организмов, населяющих моря, строят свои раковины и скелеты из углекислого кальция и кремнезема. Выпадая в осадок, раковины и скелеты умерших организмов образуют мощные пласты так называемых осадочных пород. Рифы и целые острова в океанах сложены из кристалликов углекислого кальция, составляющих основу скелета беспозвоночных животных -- коралловых полипов. Мощные слои известняка в земной коре являются результатом многовековых отложений раковин и панцирей различных организмов. В результате движений земной коры часть известняка оказалась на значительной глубине, где под действием высокого давления и температуры без плавления превратилась в мрамор. Мрамор является типичным примером видоизмененных -- метаморфических -- пород. Кристалл обычно служит символом неживой природы. Однако грань между живым и неживым установить очень трудно и понятия «кристалл» и «жизнь» не являются взаимоисключающими. Простейшие живые организмы -- вирусы -- могут соединяться в кристаллы. Конечно, в кристаллическом состоянии они не обнаруживают никаких признаков живого, так как сложные жизненные процессы в кристаллах протекать не могут. Но при изменениях внешних условий на благоприятные (такими для вирусов являются условия внутри клеток живого организма) они начинают двигаться, размножаться.

Наконец, самое удивительное. Казалось бы, кристалл и живой организм представляют собой примеры осуществления крайних возможностей в природе. В кристалле неизменными остаются сами атомы и молекулы и их взаимное расположение в пространстве, в живом организме не только не существует сколько-нибудь постоянной структуры в расположении атомов и молекул, но даже ни на одно мгновение не остается неизменным его химический состав. В процессе жизнедеятельности организма одни химические соединения разлагаются на более простые, другие сложные соединения синтезируются из простых.

Но при всех химических процессах, протекающих в живом организме, этот организм остается самим собой в течение многих десятков и сотен лет! Более того, потомки каждого живого организма являются удивительно точной его копией! Следовательно, в клетках любого животного или растения имеется что-то постоянное, неизменное, способное управлять химическими процессами, протекающими в них. Такими носителями «программы» процессов, протекающих в живой клетке, оказались молекулы дезоксирибонуклеиновой кислоты, называемой коротко ДНК. Эти молекулы уже упоминались во введении, когда речь шла о самых больших молекулах в природе.

Молекулы ДНК не только управляют процессами жизнедеятельности клетки, но и несут в себе полную информацию о строении и развитии всего живого организма из одной только клетки! С полным основанием можно сказать, что молекула ДНК является основой жизни.

Согласно современным данным, молекула ДНК представляет собой двойную спираль, составленную из небольшого числа сравнительно простых молекулярных соединений, повторяющихся в строго определенном для данного вида порядке. Диаметр молекулы ДНК равен 2*10 -9 м, а длина может достигать нескольких сантиметров. Такие гигантские молекулы с точки зрения физики рассматриваются как особый вид твердого тела -- одномерные апериодические кристаллы. Следовательно, кристаллы -- это не только символ неживой природы, но и основа жизни на Земле.