Металлов

Электропроводность металлов, полупроводников и диэлектриков связана с наличием в них свободных носителей зарядов: электронов и дырок и их упорядоченным движением под действием электрического поля E . Движение носителей заряда под действием магнитного поля в настоящей работе не рассматривается. Проводимость σ определяется формулой

σ = q n μ n + q р μ p, (1)

где q – элементарный заряд, n – концентрация электронов, р – концентрация дырок, μ n – подвижность электронов, μ p – подвижность дырок.

Существует три типа металлов, отличающихся по типу проводимости: электронные (проводимость связана с движением электронов), дырочные (проводимость связана с движением дырок) и металлы со смешенным типом проводимости (проводимость связана с движением электронов и дырок). У всех типов металлов концентрация носителей заряда очень слабо зависит от температуры . Например, у электронных металлов она равна концентрации валентных электронов и составляет n ~ 1022 штук на кубический сантиметр.

Подвижность носителей определяется химическим составом, структурой кристаллической решетки и температурой металла. У чистых металлов с идеальной кристаллической решеткой при температуре Т =0 К электроны движутся по волновым коридорам вдоль атомов, расположенных в узлах кристаллической решетки, при этом средняя длина свободного пробега электронов велика и сопротивление минимально. У некоторых металлов наблюдается явление сверхпроводимости. В настоящем издании это явление не рассматривается.

В реальных кристаллах всегда имеются атомы примесей и дефекты кристаллической решетки. На этих неоднородностях происходит рассеяние электронов, что приводит к уменьшению средней длины свободного пробега и увеличению электрического сопротивления. Это явление определяет сопротивление проводников при низких температурах. При Т >0 К атомы совершают тепловые колебания и возникает рассеяние электронов на тепловых колебаниях решетки. При повышении температуры это явление в основном обуславливает величину электрического сопротивления. Подвижность носителей заряда определяется средней длиной свободного пробега электронов.

Для практических целей определения удельного сопротивления чистого металла ρ часто используют формулу

ρ =ρ 0(1+αТ ), (2)

где ρ 0 – удельное сопротивление при комнатной температуре, a – положительный, слабо зависящий от температуры температурный коэффициент сопротивления металлов.

2. Температурная зависимость электропроводимости полупроводников и диэлектриков

В отличие от металлов, в полупроводниках и диэлектриках концентрация носителей и их подвижность зависят от температуры. На рис.1,а приведена зонная диаграмма собственного полупроводника (i - типа). Здесь изображены зависимости уровней энергии дна зоны проводимости W c, верха валентной зоны W v и уровня энергии Ферми W Fi , а также зависимость концентрации электронов n i и дырок pi от температуры Т . На рисунке по вертикальной оси отложена энергия W в электрон-вольтах, концентрация свободных носителей заряда ni , pi в одном кубическом сантиметре полупроводникового кристалла, а по горизонтальной – температура в градусах Кельвина. Уровни W c, и W v (непрерывные горизонтальные линии) не зависят от Т . Положение уровня Ферми


где k = 0.86·10−4 эВ/К постоянная Больцмана, m n* и m p* ‑ эффективные массы электронов и дырок. Если m n* ≈ m p* и полупроводник широкозонный ΔW = W c − W v ~ 1 эВ, то второй член при Т = 300 К имеет порядок 0.03 эВ и слабо изменяет положение уровня энергии Ферми. Вплоть до температур плавления вкладом второго члена можно пренебречь и считать W Fi не зависящей от температуры (горизонтальная пунктирная линия на рис.1,а).

При Т = 0 К все электроны “связаны со своими атомами” и свободных носителей заряда нет. Полупроводник является идеальным изолятором. При повышении температуры начинаются тепловые колебания атомов кристаллической решетки. В результате электрон может получить энергию, достаточную для преодоления запрещенной зоны, и попасть в зону проводимости. Такой процесс называется тепловой генерацией пары электрон – дырка. Электрон совершает хаотические (броуновские) движения по всему объему полупроводника в межатом-ном пространстве. Дырки также хаотически перемещаются, но только по межатомным электронным связям. Через некоторое время τ электрон рекомбинирует с дыркой, но в другом месте полупроводника появится новая пара. Равновесные концентрации электронов и дырок n i , дырок p i равны и определяются:

n i = N c exp (−ΔW / 2kT ),

p i = N v exp (−ΔW / 2kT ), (4)

где N c =2(2πm n*kT /h 2)3/2 – плотность квантовых состояний у дна зоны проводимости, N v = 2(2πm p*kT /h 2)3/2 – плотность квантовых состояний у верха валентной зоны, а h = 4.14·10−15 эВ·c ‑ постоянная Планка.

Экспоненциальная зависимость концентрации свободных носителей от температуры показана на рис.1,а жирной линией. В собственном полупроводнике концентрация свободных носителей заряда при всех температурах, вплоть до температуры плавления, существенно меньше концентрации валентных электронов, поэтому проводимость полупроводников на несколько порядков меньше проводимости металлов. Исключение составляют вырожденные полупроводники, у которых уровень Ферми располагается в зоне проводимости. Это может произойти при нагревании узкозонных полупроводников, у которых ΔW ~ kT .

В примесном полупроводнике n -типа уровень энергии W d валентного электрона атома донорной примеси, который не участвует в образовании ковалентных связей с соседними атомами полупроводника, располагается в запрещенной зоне недалеко от дна зоны проводимости (рис.1,б). В этом случае при Т = 0 К уровни энергии валентной зоны и примеси заполнены электронами, в зоне проводимости электронов нет и уровень Ферми располагается посередине между W d и W с. Энергетический зазор ΔW n = W cW d << ΔW , и при повышении температуры вероятность перехода электронов с уровня энергии донорной примеси существенно больше, чем с уровня энергии верха валентной зоны. Поэтому концентрация свободных электронов в зоне проводимости вначале экспоненциально растет:

n n = N c exp (−ΔW n/ kT ), (5)

а уровень Ферми понижается. При температуре активации примеси T s вероятность нахождения электрона на уровне донорной примеси F n(W ) = 0.5 и уровень Ферми пересекает W d.

При дальнейшем повышении температуры концентрация свободных носителей n n ≈ N d (N d – концентрация донорной примеси) и уровень Ферми изменяются слабо. При температуре порядка температуры истощения примеси Ti концентрация электронов собственной проводимости полупроводника n i становится соизмеримой с N d, при этом начинается рост n n = N d + ni , а уровень Ферми постепенно понижается. При T > Ti концентрация тепловых электронов и дырок становится больше концентрации примесных электронов и вклад собственной проводимости становится определяющим. При этом уровень Ферми асимптотически стремится к положению уровня Ферми в собственном полупроводнике WFi .

Аналогичные явления наблюдаются и в примесном полупроводнике р - типа (рис.1,в). В этом случае концентрация дырок в области малых температур также изменяется по экспоненциальному закону:

p p = N v exp (−ΔW p/ kT ). (6)

На длину свободного пробега и подвижность носителей заряда в основном влияют два физических фактора: рассеяние носителей заряда на тепловых колебаниях атомов кристаллической решетки и рассеяние на ионах примесей. При больших температурах преобладает рассеяние на тепловых колебаниях атомов, и с ростом температуры подвижность уменьшается. В диапазоне низких температур уменьшаются тепловые скорости движения электронов и увеличивается время воздействия электрического поля иона примеси на носители заряда, поэтому подвижность падает. Зависимость μ = f (T ) для разных концентраций примесей N приведена на рис.2. При увеличении концентрации примесей в области низких температур μ уменьшается. В области высоких температур преобладает рассеяние на тепловых колебаниях атомов кристаллической решетки, и подвижность слабо зависит от концентрации примесей.



При большой напряженности электрического поля Е в полупроводнике происходит “разогрев” электронов: их дрейфовая скорость становится соизмеримой со скоростью хаотического теплового движения, что приводит к увеличению числа столкновений. При этом средняя длина свободного пробега уменьшается, а подвижность начиная с Е кр~104 В/см падает (рис.3).

Для собственных полупроводников во всем интервале температур основной вклад в изменение проводимости вносит изменение концентрации носителей заряда:

σ = q μ n N c exp (−ΔW / 2kT ) + q μ p N v exp (−ΔW / 2kT ) = σ0 exp (−ΔW / 2kT ), (7)

где σ0 = q (μ nN c +μ рN v) – коэффициент, слабо зависящий от температуры.

Для примесных полупроводников сильная температурная зависимость проводимости наблюдается в области температур ионизации примесей T s. При этом вклад тепловых электронов и дырок можно не учитывать и проводимость

σn = q μ n N c exp (−ΔW / kT ) = σ0n exp (−ΔW / kT ),

σp = q μ p N v exp (−ΔW / kT ) = σ0n exp (−ΔW / kT ), (8)

где σ0n = nN c и σ0р = рN v – коэффициенты, слабо зависящие от температуры.

В области температур выше T s и ниже Ti проводимость примесных полупроводников слабо зависит от температуры. В этой температурной области работают полупроводниковые диоды, транзисторы и интегральные микросхемы. При Т > Ti примесные полупроводники обычно не используют.

3. Параметры и характеристики терморезисторов

Терморезисторы могут изготавливаться из собственных полупроводников с малой шириной запрещенной зоны ΔW или из примесных полупроводников с высокой температурой активации примеси Ts .

Основной характеристикой терморезистора является температурная зависимость его сопротивления R . Она совпадает с температурной зависимостью удельного сопротивления полупроводника ρ , из которого изготовлен терморезистор. Во всем диапазоне рабочих температур эта зависимость достаточно точно определяется соотношением

R = R ∞exp(B /T ), (9)

где R ¥ - коэффициент, зависящий от исходного материала и конструкции терморезистора, B – коэффициент температурной чувствительности, характеризующий физические свойства материала терморезистора. Его можно найти экспериментально

К, (10)

измерив R ком – сопротивление терморезистора при комнатной температуре Т ком и R 1 – сопротивление при повышенной температуре Т 1.

Рассчитав коэффициент температурной чувствительности, можно найти ширину запрещенной зоны собственного полупроводника из формул (9) и (7) с учетом, что R ~ ρ = 1/σ;

ΔW = 2kB , (11)

или примесного полупроводника n и р - типа из формул (9) и (8)

ΔW n = kB n,

ΔW р = kB р, (12)

где B n, и B р, ‑ коэффициенты температурной чувствительности полупроводников n - и р -типа.

Температурный коэффициент сопротивления терморезистора

https://pandia.ru/text/78/422/images/image006_49.gif" align="left" width="244" height="270"> Статическая вольт-амперная характеристика (ВАХ) терморезистора – это зависимость напряжения на терморезисторе от силы тока в условиях теплового равновесия между терморезистором и окружающей средой. На рис.4 показаны ВАХ терморезисторов с различными коэффициентами температурной чувствительности. Линейность ВАХ при малых токах и напряжениях связана с тем, что выделяемая в терморезисторе мощность недостаточна для существенного изменения его температуры. При увеличении тока, проходящего через терморезистор, выделяемая в нем мощность приводит к повышению температуры, росту концентрации свободных носителей заряда и уменьшению сопротивления. Линейность ВАХ нарушается. При дальнейшем увеличении тока и большой температурной чувствительности терморезистора может наблюдаться падающий участок ВАХ (участок с отрицательным дифференциальным сопротивлением).

Для каждой точки статической ВАХ терморезистора выполняется уравнение теплового баланса между мощностью электрического тока, выделяющейся в терморезисторе, и мощностью, которую он рассеивает в окружающую среду:

P = U 2/R = I 2R = H (T T окр), (15)

где Н [Вт/К]– коэффициент рассеяния терморезистора, численно равный мощности, которую нужно выделить в терморезисторе, чтобы его температура увеличилась на 1 К, Т – температура терморезистора, T окр – температура окружающей среды.

Максимально допустимая температура терморезистора – это температура, при которой еще не происходит необратимых изменений параметров и характеристик терморезистора.

Максимально допустимая мощность рассеяния терморезистора Р max – это мощность, при которой терморезистор, находящийся в спокойном воздухе при температуре 20ºС, разогревается при прохождении тока до максимально допустимой температуры.

Постоянная времени терморезистора t - это время, в течение которого превышение температуры терморезистора над температурой окружающей среды ΔT = (T T окр) уменьшится в е = 2,71 раз по отношению к начальной разности температур терморезистора и окружающей среды (T 0−T окр).

(T T окр) = (T 0−T окр) exp(−t /τ). (16)

Основное количество терморезисторов, выпускаемых промышленностью, изготовлено из оксидных полупроводников, а именно из оксидов металлов переходной группы Периодической системы элементов (от титана до цинка). Электропроводность оксидных полупроводников с преобладающей ионной связью отличается от электропроводности классических ковалентных полупроводников. Для металлов переходной группы характерны незаполненные электронные оболочки и переменная валентность. В результате электропроводность таких оксидов связана с обменом электронами между соседними ионами (“прыжковый” механизм). Энергия, необходимая для стимулирования такого обмена, экспоненциально уменьшается с увеличением температуры. Температурная зависимость сопротивления оксидного терморезистора аппроксимируется уравнением (9) для классических ковалентных полупроводников. Коэффициент температурной чувствительности В (10) отражает интенсивность обмена между соседними ионами, а ΔW – энергию обменной связи (11).

Полупроводниковыми называют материалы, основной особенностью которых является зависимость удельной электропроводности от внешних энергетических воздействий, а также от концентрации и типа примесей.

Качественные различия свойств полупроводников и про-
водников определяются типом их химических связей. В металлах валентные электроны атомов кристаллической решетки являются частью коллектива равноценных носителей заряда, называемого электронным газом (металлическая связь). Количество этих носи-
телей заряда , что соответствует числу атомов в еди-
нице объема кристаллической решетки. Заметно изменить такую концентрацию носителей заряда воздействием внешнего фактора (температурой, облучением, введением примесей, деформацией и т. д.) невозможно. Отсюда и все особенности проводимости проводников: положительный температурный коэффициент удельного сопротивления, независимость концентрации носителей заряда от примесей в решетке, сверхпроводимость и т. д.

В полупроводниках все валентные электроны атомов участвуют в образовании ковалентной (или ионно-ковалентной) насыщенной химической связи. При в полупроводниковых кристаллах нет ни одного квазисвободного носителя заряда, способного принять участие в направленном движении при воздействии внешнего фактора, т. е. при температуре абсолютно­го нуля полупроводник не обладает электропроводностью. Прочность ковалентной (ионно-ковалентной) связи (энергия связи) соответствует ширине запрещенной зоны полупроводника . При температурах, отличных от 0 К, часть носителей заряда, обладая тепловой энергией способна разорвать химическую связь, что приводит к образованию равного количества электронов в зоне проводимости и дырок в валентной зоне .Процесс термогенерации носителей заряда носит вероятностный характер, и в случае генерации собственных носителей заряда их концентрации определяются соотношением

где и - эффективные плотности состояний, приведенные, соответственно, ко дну зоны проводимости к потолку свободной зоны.

Для управления типом электропроводности и значением проводимости полупроводника в узлы его кристаллической решетки вводят в малой концентрации примеси с валентностью,
отличающейся в большую или меньшую сторону от валентности основных атомов полупроводника. Таким примесям в запрещенной зоне полупроводника соответствуют дополнительные энергетические уровни: донорные – вблизи дна зоны проводимости и акцепторные - вблизи потолка валентной зоны. Энергия, необходимая для термогенерации носителей заряда, обусловленных присутствием примесей (энергия ионизации примесей) в 50-100 раз меньше ширины запрещенной зоны:

Процесс термогенерации примесных носителей также является вероятностным и описывается формулами

где - концентрация донорных примесей, а - акцепторных примесей. Пока температура низка, не все примеси ионизованы и концентрация носителей рассчитывается по формулам (4). Однако, в типичных случаях, уже при температуре значительно ниже комнатной (около -60 0 С) все примеси оказываются ионизованы и при дальнейшем нагреве концентрация не меняется и равна концентрации введенных примесей (каждый атом примеси «дал» по одному носителю заряда. Поэтому в некотором диапазоне температур концентрация носителей, практически, не зависит от температуры (область II на рис.4). Однако при значительном повышении температуры (для кремния, например, сто около 120 0 С), начинается разрыв собственных связей по механизму, представленному формулой (3) и концентрация носителей заряда начинает резко возрастать. Рассмотренное иллюстрирует рис. 4, на котором представлены температурные зависимости концентраций носителей заряда в полулогарифмическом масштабе от обратной температуры (удобство такого масштаба становится очевидным после логарифмирования выражений (3) и(4)).

Здесь - температура истощения примеси - температура перехода к собственной проводимости. Формулы для рас

Рис. 4. Температурная зависимость концентрации основных носителей заряда в примесном полупроводнике n - типа. I - область слабой ионизации примеси (примесной электропроводности) (); II - область истощения примеси (); III - область собственной проводимости ().

чета этих температур приведены ниже. В области .III генерация носителей заряда происходит в соответствии с формулой (3). При более низких температурах этот процесс пренебрежимо мал, и поэтому в области .I генерация носителей определяется только формулой (4). Как следует из выражений (3) и (4), угол тем больше, чем больше ширина запрещенной зоны полупроводника, а угол тем больше, чем больше энергия ионизации доноров (акцепторов) . Учитывая что , заключаем, что > .

Квазисвободные носители заряда (и электроны и дырки), обладая средней тепловой энергией совершают хаотическое движение с тепловой скоростью Внешнее воздействие (электрическое поле, электромагнитное поле, градиент температуры и т.д.) лишь «упорядочивает» этот хаос, чуть-чуть направляя носители заряда, преимущественно в соответствии с приложенным воздействием. Если этим внешним воздействием является электрическое поле, возникает направленное движение носителей заряда - дрейф. При этом плотность дрейфового тока

где - удельная электропроводность, - концентрация носителей заряда, - скорость направленного движения под влиянием внешнего электрического поля напряженностью Е .

Как правило, когда выполняется закон Ома, назначение Е - лишь направлять носители заряда, не изменяя их энергию (поля слабые). Таким образом, скорость движения носителей заряда остается равной , а скорость дрейфа , характеризующая эффективность направленного движения коллектива носителей заряда, зависит от того, как «сильно мешают» этому движению различные дефекты в кристаллической решетке. Параметр характеризующий эффективность направленного движения носителей заряда, называется подвижностью:

Очевидно, чем больше в кристаллической решетке дефектов, участвующих в рассеянии носителей заряда, тем меньше . Под рассеянием понимают изменения квазиимпульса направленного движения носителей заряда, обусловленного влиянием дефектов. Кроме того, так как в кристалле всегда присутствуют различные типы дефектов (тепловые колебания атомов, примеси и т. д.), то подвижность носителя заряда «контролируется» самым эффективным механизмом рассеяния:

где m Σ - результирующая подвижность носителей заряда в полупроводнике; m i - подвижность, обусловленнаяi механизмом рассеяния. Так, например, в области высоких температур m Σ контролируется вкладом в рассеяние тепловых колебаний решетки , и с ростом температуры уменьшается. В области низких температур, когда вклад решеточного рассеяния в m Σ мал, носители заряда, имеющие малую , длительное время оказываются в поле кулоновских сил (притяжения или отталкивания) ионизированных примесей. Именно этот механизм рассеяния «контролирует» m Σ в полупроводниках при низких температурах. Поэтому подвижность носителей заряда в зависимости от температуры определяются полуэмпирическим соотношением вида:

где a и b - постоянные величины.

Качественная зависимость lnm Σ (T) в кристаллах вида (7) представлена на рис. 5. На этом рисунке кривые 1 и 2 иллюстрируют тот факт, что возрастание концентрации примесей (N пр1 <N пр2) уменьшается m Σ в области низких температур, оставляя неизменным механизм решеточного рассеяния в кристалле.

Решеточное рассеяние на акустических фононах преобладает при T> 100 K. При этом в области истощения примеси, когда можно положить

Рис. 5. Температурная зависимость подвижности носителей заряда
в полупроводниках с различными концентрациями примеси. N пр1

удельная электропроводность может уменьшаться с увеличение температуры за счет уменьшения подвижности носителей m Σ (T ) из-за рассеяния носителей заряда на акустических фононах.

ЗАДАНИЕ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКОЙ

РАБОТЫ

Зависимость электропроводности металлов от температуры

В металлах валентная зона заполнена электронами либо частично, либо целиком, но при этом перекрывается со следующей разрешенной зоной.

Заполненные состояния от незаполненных отделяются уровнем Ферми .

Таким образом, уровень Ферми в металлах расположен в разрешенной зоне.

Электронный газ в металле является практически вырожденным , в этом случае

· концентрация электронов от температуры практически не зависит,

· и температурная зависимость электропроводности целиком определяется температурной зависимостью подвижности.

· В области высоких температур

В металлах, так же как и в полупроводниках, доминирует рассеяние электронов на фононах,

И подвижность обратно пропорциональна температуре.

Тогда удельное сопротивление линейно растет с температурой.

· При низких температурах

Концентрация фононов становится малой,

Подвижность определяется рассеянием на примесях и не зависит от температуры.

Сопротивление остается постоянным (рис.5.10).

ЭФФЕКТ ХОЛЛА

Американский физик Э. Холл провел эксперимент (1879), в котором пропускал постоянный ток I через пластинку М, изготовленную из золота, и измерял разность потенциалов между противоположными точками А и С на верхней и нижней гранях. Эти точки лежат в одном и том же поперечном сечении проводника М.

Поэтому, как и следовало ожидать .

Когда пластина с током была помещена в однородное магнитное поле, перпендикулярное ее ее боковым граням, то потенциалы точек А и С стали разными. Это явление получило название ЭФФЕКТ ХОЛЛА.

Рис.5.11. Рассмотрим образец прямоугольной формы, по которому течет ток с плотностью .

Образец помещен в магнитное поле с индукцией , перпендикулярное вектору

Под действием электрического поля электроны в проводнике приобретают дрейфовую скорость .

Параметр, связывающий дрейфовую скорость носителей заряда с напряженностью электрического поля, называют подвижностью носителей .

Тогда и - подвижность численно равна скорости дрейфа в электрическом поле единичной напряженности.

На частицу, движущуюся с этой скоростью в магнитном поле действует сила Лоренца , направленная перпендикулярно векторам и .

Под действием сил и электрон перемешается вдоль образца, одновременно вращаясь (под действием магнитного поля).

Траекторией такого движения является циклоида.

Магнитное поле, при котором радиус кривизны траектории много больше длины свободного пробега электрона, называют слабым .

Под действием силы Лоренца электроны отклоняются к боковой поверхности образца, и на ней создается избыток отрицательного заряда.

На противоположной стороне возникает недостаток отрицательного заряда, т.е. избыток положительного.

Разделение зарядов происходит до тех пор, пока сила, действующая на электроны со стороны возникшего электрического поля , направленного от одной боковой поверхности к другой, не скомпенсирует силу Лоренца. Это поле называют полем Холла , а само явление возникновения в образце с текущим по нему током поперечного электрического поля под действием магнитного поля было названо эффектом Холла.

Разделение зарядов прекратится при условии .

Тогда разность потенциалов между боковыми гранями, называемая ЭДС Холла или холловская разность потенциалов, равна

, (5.1)

где - ширина образца .

Плотность тока ,

где n - концентрация носителей заряда.

выразив скорость и подставив в (5.1), получаем

,

- постоянная Холла.

Числовое значение постоянной Холла зависит от материала пластинки, причем для одних веществ он положителен, а для других отрицателен.

Знак постоянной Холла совпадает со знаком заряда частиц, обуславливающих проводимость данного материала.

Поэтому на основании измерения постоянной Холла для полупроводника можно

1. судить о природе его проводимости :

· Если - проводимость электронная;

· Если - проводимость дырочная;

· Если в проводнике осуществляются оба типа проводимости то по знаку постоянной Холла можно судить том, какой из них был преобладающим.

2.определить концентрацию носителей заряда, если характер проводимости и их заряды известны (например, для металлов. Для одновалентных металлов концентрация электронов проводимости совпадает с концентрацией атомов).

  1. оценить для электронного проводника значение средней длины свободного пробега электронов.

Где - абсолютное значение заряда и массы электрона;

Как отмечалось во Введении, с ростом температуры в полупроводнике будет появляться все больше свободных носителей электрического заряда – электронов в зоне проводимости и дырок в валентной зоне. Если внешнее электрическое поле отсутствует, то движение этих заряженных частиц носит хаотический характер и ток через любое сечение образца равен нулю. Среднюю скорость частиц – т.н. «тепловую скорость» можно рассчитать по той же формуле, что и среднюю тепловую скорость молекул идеального газа

где k - постоянная Больцмана; m -эффективная масса электронов или дырок.

При приложении внешнего электрического поля в полупроводнике появится направленная, «дрейфовая» компонента скорости – по полю у дырок, против поля – у электронов, т.е. через образец потечет электрический ток. Плотность тока j будет складываться из плотностей «электронного» j n и «дырочного» j p токов:

где n, p - концентрации свободных электронов и дырок; υ n , υ p – дрейфовые скорости носителей заряда.

Здесь следует заметить, что хотя заряды у электрона и дырки – противоположные по знаку, но и векторы дрейфовых скоростей направлены в противоположные стороны, т. е. суммарный ток фактически является суммой модулей электронного и дырочного токов.

Очевидно, что скорости υ n и υ p будут сами зависеть от внешнего электрического поля (в простейшем случае – линейно). Введем коэффициенты пропорциональности μ n и μ p , называемые «подвижностями» носителей заряда

и перепишем формулу 2 в виде:

j = en n E + ep p E = n E + p E = E. (4)

Здесь - электропроводность полупроводника, а n и p - ее электронная и дырочная составляющие, соответственно.

Как видно из (4) электропроводность полупроводника определяется концентрациями свободных носителей заряда в нем и их подвижностями. Это будет справедливым и для электропроводности металлов. Но в металлах концентрация электронов очень велика
и не зависит от температуры образца.Подвижность электронов в металлах убывает с температурой вследствие увеличения числа столкновений электронов с тепловыми колебаниями кристаллической решетки, что и приводит к уменьшению электропроводности металлов с ростом температуры. В полупроводниках же основной вклад в температурную зависимость электропроводности вносит зависимость от температуры концентрации носителей заряда.

Рассмотрим процесс теплового возбуждения (генерации ) электронов из валентной зоны полупроводника в зону проводимости. Хотя средняя энергия тепловых колебаний атомов кристалла
составляет, например, при комнатной температуре всего 0,04 эВ, что намного меньше ширины запрещенной зоны большинства полупроводников, среди атомов кристалла будут и такие, энергия колебаний которых соизмерима сε g . При передаче энергии от этих атомов электронам, последние переходят в зону проводимости. Количество электронов в интервале энергий от ε до ε +d ε зоны проводимости можно записать как:

где
- плотность энергетических уровней (6);

- вероятность заселения уровня с энергией ε электроном (функция распределения Ферми ). (7)

В формуле (7) символом F обозначен т.н. уровень Ферми. В металлах уровень Ферми – последний занятый электронами уровень при абсолютном нуле температуры (см. Введение). Действительно, f (ε ) = 1 при ε < F и f (ε ) = 0 при ε > F (рис.1).

Рис.1. Распределение Ферми-Дирака; ступенчатое при температуре абсолютного нуля и «размытое» при конечных температурах.

В полупроводниках, как мы увидим в дальнейшем, уровень Ферми обычно находится в запрещенной зоне, т.е. на нем не может находиться электрон. Однако и в полупроводниках при Т = 0 все состояния, лежащие ниже уровня Ферми, заполнены, а состояния выше уровня Ферми – пусты. При конечной температуре вероятность заселения электронами уровней с энергией ε > F уже не равна нулю. Но концентрация электронов в зоне проводимости полупроводника все же намного меньше числа свободных энергетических состояний в зоне, т.е.
. Тогда в знаменателе (7) можно пренебречь единицей и записать функцию распределения в «классическом» приближении:

. (8)

Концентрацию электронов в зоне проводимости можно получить, проинтегрировав (5) по зоне проводимости от ее дна - Е 1 до вершины - Е 2 :

В интеграле (9) за нуль отсчета энергий принято дно зоны проводимости, а верхний предел заменен на
из-за быстрого убывания экспоненциального множителя с ростом энергии.

После вычисления интеграла получим:

. (10)

Вычисления концентрации дырок в валентной зоне дают:

. (11)

Для полупроводника, в составе которого отсутствуют примеси, т.н. собственного полупроводника, концентрация электронов в зоне проводимости должна быть равна концентрации дырок в валентной зоне (условие электронейтральности ). (Отметим, что таких полупроводников в природе не существует, но при определенных температурах и определенных концентрациях примесей можно пренебречь влиянием последних на свойства полупроводника). Тогда, приравнивая (10) и (11), получаем для уровня Ферми в собственном полупроводнике:

. (12)

Т.е. при абсолютном нуле температур уровень Ферми в собственном полупроводнике расположен точно посередине запрещенной зоны, и проходит вблизи середины запрещенной зоны при не очень высоких температурах, несколько смещаясь обычно в сторону зоны проводимости (эффективная масса дырок, как правило, больше эффективной массы электронов (см.Введение). Теперь, подставляя (12) в (10), для концентрации электронов получим:

. (13)

Аналогичное соотношение получится и для концентрации дырок:

. (14)

Формулы (13) и (14) с достаточной точностью позволяют рассчитать концентрации носителей заряда в собственном полупроводнике. Значения концентрации, вычисленные по этим соотношениям, называются собственными концентрациями. Например, для германия Ge, кремния Si и арсенида галлия GaAs при Т=300 К они составляют соответственно. Практически же, для изготовления полупроводниковых приборов, применяются полупроводники со значительно более высокими концентрациями носителей заряда (
). Бóльшая, по сравнению с собственной, концентрация носителей обусловлена введением в полупроводникэлектроактивных примесей (существуют еще т.н. амфотерные примеси, введение которых в полупроводник не изменяет концентрацию носителей в нем). Примесные атомы в зависимости от валентности и ионного (ковалентного) радиуса могут по-разному входить в кристаллическую решетку полупроводника. Одни из них могут замещать атом основного вещества в узле решетки – примеси замещения. Другие располагаются преимущественно в междоузлиях решетки – примеси внедрения. Различно и их влияние на свойства полупроводника.

Допустим, что в кристалле из четырехвалентных атомов кремния часть атомов Si замещена атомами пятивалентного элемента, например, атомами фосфора Р. Четыре валентных электрона атома фосфора образуют ковалентную связь с ближайшими атомами кремния. Пятый валентный электрон атома фосфора будет связан с ионным остовом кулоновским взаимодействием. В целом эта пара из иона фосфора с зарядом +е и связанного с ним кулоновским взаимодействием электрона будет напоминать атом водорода, вследствие чего такие примеси называются еще и водородоподобными примесями. Кулоновское взаимодействие в кристалле будет значительно ослаблено из-за электрической поляризации окружающих примесный ион соседних атомов. Энергию ионизации такого примесного центра можно оценить по формуле:

, (15)

где - первый потенциал ионизации для атома водорода – 13,5 эВ;

χ – диэлектрическая проницаемость кристалла (χ =12 для кремния).

Подставив в (15) эти значения и значение эффективной массы электронов в кремнии - m n = 0,26 m 0 , получим для энергии ионизации атома фосфора в кристаллической решетке кремния ε I = 0,024 эВ, что существенно меньше ширины запрещенной зоны и даже меньше средней тепловой энергии атомов при комнатной температуре. Это означает, во-первых, что примесные атомы гораздо легче ионизировать, чем атомы основного вещества и, во-вторых, - при комнатной температуре эти примесные атомы будут все ионизированы. Появление в зоне проводимости полупроводника электронов, перешедших туда с примесных уровней, не связано с образованием дырки в валентной зоне. Поэтому концентрация основных носителей тока – электронов в данном образце может на несколько порядков превышать концентрацию неосновных носителей – дырок. Такие полупроводники называются электронными или полупроводниками n-типа, а примеси, сообщающие полупроводнику электронную проводимость, называются донорами . Если в кристалл кремния ввести примесь атомов трехвалентного элемента, например, - бора В, то одна из ковалентных связей примесного атома с соседними атомами кремния остается незавершенной. Захват на эту связь электрона с одного из соседних атомов кремния приведет в появлению дырки в валентной зоне, т.е. в кристалле будет наблюдаться дырочная проводимость (полупроводник р-типа ). Примеси, захватывающие электрон, называются акцепторами. На энергетической диаграмме полупроводника (рис.2) донорный уровень размещается ниже дна зоны проводимости на величину энергии ионизации донора, а акцепторный – выше потолка валентной зоны на энергию ионизации акцептора. Для водородоподобных доноров и акцепторов, какими являются в кремнии элементы V и III групп Периодической системы Менделеева, энергии ионизации примерно равны.

Рис.2. Энергетические диаграммы электронного(слева) и дырочного (справа) полупроводников. Показано положение уровней Ферми при температурах, близких к абсолютному нулю.

Вычисление концентрации носителей заряда в полупроводнике с учетом примесных электронных состояний – задача достаточно непростая и аналитическое решение ее можно получить только в некоторых частных случаях.

Рассмотрим полупроводник n-типа при температуре, достаточно низкой. В этом случае можно пренебречь собственной проводимостью. Все электроны в зоне проводимости такого полупроводника – это электроны, перешедшие туда с донорных уровней:

. (16)

Здесь
- концентрация донорных атомов;

- число электронов, оставшихся еще на донорных уровнях :

. (17)

С учетом (10) и (17) уравнение 16 запишем в виде:

. (18)

Решая это квадратное уравнение относительно
, получим

Рассмотрим решение уравнения при очень низких температурах (на практике – это обычно температуры порядка десятков градусов Кельвина), когда второе слагаемое под знаком квадратного корня много больше единицы. Пренебрегая единицами, получим:

, (20)

т.е. при низких температурах уровень Ферми расположен примерно посередине между донорным уровнем и дном зоны проводимости (при Т = 0К – точно посередине). Если подставить (20) в формулу для концентрации электронов (10), то можно видеть, что концентрация электронов растет с температурой по экспоненциальному закону

. (21)

Показатель экспоненты
указывает на то, что в данном диапазоне температур концентрация электронов растет за счетионизации донорных примесей.

При более высоких температурах, - при таких, когда собственная проводимость еще незначительна, но выполняется условие
, второе слагаемое под корнем будет меньше единицы и используя соотношение

+…., (22)

получим для положения уровня Ферми

, (23)

а для концентрации электронов

. (24)

Все доноры уже ионизированы, концентрация носителей в зоне проводимости равна концентрации донорных атомов – это т.н. область истощения примесей. При еще более высоких температурах происходит интенсивный заброс в зону проводимости электронов из валентной зоны (ионизация атомов основного вещества) и концентрация носителей заряда снова начинает расти по экспоненциальному закону (13), характерному для области с собственной проводимостью. Если представить зависимость концентрации электронов от температуры в координатах
, то она будет выглядеть в виде ломаной линии, состоящей из трех отрезков, соответствующих рассмотренным выше температурным диапазонам (рис.3).

Рис.3. Температурная зависимость концентрации электронов в полупроводникеn-типа.

Аналогичные соотношения, с точностью до множителя, получаются при вычислении концентрации дырок в полупроводнике р-типа.

При очень высоких концентрациях примесей (~10 18 -10 20 см -3) полупроводник переходит в т.н. вырожденное состояние. Примесные уровни расщепляются в примесную зону, которая может частично перекрыться с зоной проводимости (в электронных полупроводниках) или с валентной зоной (в дырочных). При этом концентрация носителей заряда практически перестает зависеть от температуры вплоть до очень высоких температур, т.е. полупроводник ведет себя как металл (квазиметаллическая проводимость ). Уровень Ферми в вырожденных полупроводниках будет располагаться или очень близко от края соответствующей зоны, или даже заходить внутрь разрешенной энергетической зоны, так, что и зонная диаграмма такого полупроводника будет похожа на зонную диаграмму металла (см. рис. 2а Введения). Для расчета концентрации носителей заряда в таких полупроводниках функцию распределения следует брать не в виде (8), как это делалось выше, а в виде квантовой функции (7). Интеграл (9) в этом случае вычисляется численными методами и носит название интеграла Ферми-Дирака. Таблицы интегралов Ферми-Дирака для значений приведены, например, в монографии Л.С.Стильбанса.

При
степень вырождения электронного (дырочного) газа настолько высока, что концентрация носителей не зависит от температуры вплоть до температуры плавления полупроводника. Такие «вырожденные» полупроводники используются в технике для изготовления ряда электронных приборов, среди которых важнейшими являютсяинжекционные лазеры и туннельные диоды.

Определенный, хотя и менее существенный вклад, в температурную зависимость электропроводности будет вносить температурная зависимость подвижности носителей заряда. Подвижность, «макроскопическое» определение которой дано нами в (3), может быть выражена через «микроскопические» параметры – эффективную массу и время релаксации импульса – среднее время свободного пробега электрона (дырки) между двумя последовательными столкновениями с дефектами кристаллической решетки:

, (25)

а электропроводность, с учетом соотношений (4) и (25) запишется, как:

. (26)

В качестве дефектов – центров рассеяния могут выступать тепловые колебания кристаллической решетки – акустические и оптические фононы (см. методич. пособие «Структура и динамика…»), примесные атомы – ионизированные и нейтральные, лишние атомные плоскости в кристалле – дислокации, поверхность кристалла и границы зерен в поликристаллах и т.д. Сам процесс рассеяния носителей заряда на дефектах может быть упругим и неупругим – в первом случае происходит только изменение квазиимпульса электрона (дырки); во-втором – изменение и квазиимпульса и энергии частицы. Если процесс рассеяния носителя заряда на дефектах решетки –упругий , то время релаксации импульса можно представить в виде степенной зависимости от энергии частицы:
. Так, для наиболее важных случаев упругого рассеяния электронов на акустических фононах и ионах примеси

(27)

и
. (28)

Здесь
- величины, не зависящие от энергии;
- концентрацияионизированных примесей любого типа.

Усреднение времени релаксации осуществляется по формуле:

;
. (29)

С учетом (25)-(29) получим:


. (30)

Если в каком-либо диапазоне температур вклады в подвижность носителей, соответствующие разным механизмам рассеяния, сопоставимы по величине, то подвижность будет рассчитываться по формуле:

, (31)

где индекс i соответствует определенному механизму рассеяния: на примесных центрах, на акустических фононах, оптических фононах и т.д.

Типичная зависимость подвижности электронов (дырок) в полупроводнике от температуры показана на рис.4.

Рис.4. Типичная зависимость от температуры подвижности носителей заряда в полупроводнике.

При очень низких температурах (в районе абсолютного нуля) примеси еще не ионизированы, рассеяние происходит на нейтральных примесных центрах и подвижность практически не зависит от температуры (рис.4, участок а-б). С повышением температуры концентрация ионизированных примесей растет по экспоненциальному закону, а подвижность падает согласно (30) – участок б-в. В области истощения примесей концентрация ионизированных примесных центров уже не изменяется, и подвижность растет, как
(рис.4, в-г). При дальнейшем повышении температуры начинает преобладать рассеяние на акустических и оптических фононах и подвижность снова падает (г-д).

Поскольку температурная зависимость подвижности в основном – степенная функция температуры, а температурная зависимость концентрации – в основном экспоненциальная, то и температурный ход электропроводности будет в основных чертах повторять температурную зависимость концентрации носителей заряда. Это дает возможность достаточно точно определять по температурной зависимости электропроводности важнейший параметр полупроводника – ширину его запрещенной зоны, что и предлагается проделать в данной работе.

Поскольку электроны и дырки в полупроводнике представляют собой невырожденную систему, то его проводимость можно рассматривать с классической точки зрения. Выражение для плотности тока в скалярном виде записывается как

где n и p – концентрации электронов и дырок, u n и u p – их дрейфовые скорости. При не слишком высоких значениях напряженности поля эти скорости пропорциональны ее величине.

Здесь b n и b p – подвижности электронов и дырок соответственно.

Для проводимости металлов в классической теории была получена формула , где в знаменателе стоит масса свободного электрона. С другой стороны из (8) и (9) можно получить проводимость в виде . Приравнивая эти выражения для проводимости, получим

, (10)

где время свободного пробега τ выражено через среднюю длину свободного пробега и среднюю квадратическую скорость теплового движения электронов υ. Выражение (10) справедливо для электронов и дырок в полупроводнике, если под массой подразумевать их эффективные массы.

В области высоких температур рассеяние носителей происходит преимущественно на тепловых колебаниях решетки, т.е. фононах. Длина пробега носителей обратно пропорциональна температуре . Кроме того тепловая скорость электронов υ пропорциональна корню из температуры . Тогда подвижность .

При низких температурах рассеяние носителей происходит в основном на ионизированных примесных атомах. Этот процесс похож на рассеяние частиц на ядрах, подробно изученное Э. Резерфордом. Заряженная частица, пролетая мимо ядра, отклоняется от первоначального направления движения так, что траектория имеет вид гиперболы. Длина свободного пробега пропорциональна четвертой степени скорости . Кроме того, длина свободного пробега обратно пропорциональна концентрации примесей N , поскольку чем больше примесных ионов, тем чаще носитель взаимодействует с ними. Тогда подвижность пропорциональна температуре в степени 3/2. .

Как было показано выше. удельная проводимость может быть записана в виде . Зависимость этой величины от температуры обусловлена соответствующими зависимостями концентрации носителей и их подвижностей. Зависимость подвижностей при всех температурах является степенной. В тех температурных интервалах, когда концентрация носителей имеет экспоненциальную зависимость от температуры, именно она определяет результирующую зависимость проводимости от температуры.

Концентрации электронов и дырок в собственном полупроводнике имеют выражение:

, (11)

Если полупроводник легирован примесями иной валентности, то концентрации электронов и дырок в электронном и дырочном полупроводниках даются выражениями:

, (12)

. (13)

Здесь E d и N d – энергия активации примеси (разность энергии дна зоны проводимости и донорного уровня) и концентрация донорных примесных атомов соответственно, E g – ширина запрещенной зоны. Эффективные массы электронов и дырок обозначаются как m n и m p .

Из всего сказанного можно сделать вывод, что зависимость удельной проводимости от температуры имеет характер

(14)

при низких температурах, когда осуществляется ионизация примесей, либо

(15)

при высоких температурах, когда интенсивно генерируются собственные носители.

Энергии активации определяются по наклону прямолинейного участка графика зависимости от обратной температуры T –1 . Это либо расстояние от примесного уровня до границы зоны, либо ширина запрещенной зоны.